Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(2): 935-951, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610787

RESUMO

Eukaryotic life benefits from-and ofttimes critically relies upon-the de novo biosynthesis and supply of vitamins and micronutrients from bacteria. The micronutrient queuosine (Q), derived from diet and/or the gut microbiome, is used as a source of the nucleobase queuine, which once incorporated into the anticodon of tRNA contributes to translational efficiency and accuracy. Here, we report high-resolution, substrate-bound crystal structures of the Sphaerobacter thermophilus queuine salvage protein Qng1 (formerly DUF2419) and of its human ortholog QNG1 (C9orf64), which together with biochemical and genetic evidence demonstrate its function as the hydrolase releasing queuine from queuosine-5'-monophosphate as the biological substrate. We also show that QNG1 is highly expressed in the liver, with implications for Q salvage and recycling. The essential role of this family of hydrolases in supplying queuine in eukaryotes places it at the nexus of numerous (patho)physiological processes associated with queuine deficiency, including altered metabolism, proliferation, differentiation and cancer progression.


Assuntos
Chloroflexi , Glicosídeo Hidrolases , Nucleosídeo Q , Humanos , Guanina/metabolismo , Micronutrientes , Nucleosídeo Q/metabolismo , Proteínas , RNA de Transferência/metabolismo , Glicosídeo Hidrolases/química , Chloroflexi/enzimologia
2.
Biomolecules ; 12(12)2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36551188

RESUMO

Dihydrouridine (D) is an abundant modified base found in the tRNAs of most living organisms and was recently detected in eukaryotic mRNAs. This base confers significant conformational plasticity to RNA molecules. The dihydrouridine biosynthetic reaction is catalyzed by a large family of flavoenzymes, the dihydrouridine synthases (Dus). So far, only bacterial Dus enzymes and their complexes with tRNAs have been structurally characterized. Understanding the structure-function relationships of eukaryotic Dus proteins has been hampered by the paucity of structural data. Here, we combined extensive phylogenetic analysis with high-precision 3D molecular modeling of more than 30 Dus2 enzymes selected along the tree of life to determine the evolutionary molecular basis of D biosynthesis by these enzymes. Dus2 is the eukaryotic enzyme responsible for the synthesis of D20 in tRNAs and is involved in some human cancers and in the detoxification of ß-amyloid peptides in Alzheimer's disease. In addition to the domains forming the canonical structure of all Dus, i.e., the catalytic TIM-barrel domain and the helical domain, both participating in RNA recognition in the bacterial Dus, a majority of Dus2 proteins harbor extensions at both ends. While these are mainly unstructured extensions on the N-terminal side, the C-terminal side extensions can adopt well-defined structures such as helices and beta-sheets or even form additional domains such as zinc finger domains. 3D models of Dus2/tRNA complexes were also generated. This study suggests that eukaryotic Dus2 proteins may have an advantage in tRNA recognition over their bacterial counterparts due to their modularity.


Assuntos
Oxirredutases , Uridina , Humanos , Bactérias/enzimologia , Bactérias/metabolismo , Eucariotos/enzimologia , Oxirredutases/química , Oxirredutases/classificação , Oxirredutases/genética , Filogenia , RNA de Transferência/metabolismo , Uridina/metabolismo
3.
Nat Biotechnol ; 39(8): 978-988, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33859402

RESUMO

Current next-generation RNA-sequencing (RNA-seq) methods do not provide accurate quantification of small RNAs within a sample, due to sequence-dependent biases in capture, ligation and amplification during library preparation. We present a method, absolute quantification RNA-sequencing (AQRNA-seq), that minimizes biases and provides a direct, linear correlation between sequencing read count and copy number for all small RNAs in a sample. Library preparation and data processing were optimized and validated using a 963-member microRNA reference library, oligonucleotide standards of varying length, and RNA blots. Application of AQRNA-seq to a panel of human cancer cells revealed >800 detectable miRNAs that varied during cancer progression, while application to bacterial transfer RNA pools, with the challenges of secondary structure and abundant modifications, revealed 80-fold variation in tRNA isoacceptor levels, stress-induced site-specific tRNA fragmentation, quantitative modification maps, and evidence for stress-induced, tRNA-driven, codon-biased translation. AQRNA-seq thus provides a versatile means to quantitatively map the small RNA landscape in cells.


Assuntos
MicroRNAs , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Linhagem Celular Tumoral , Biblioteca Gênica , Humanos , MicroRNAs/química , MicroRNAs/genética , Neoplasias/genética , Neoplasias/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA de Transferência/química , RNA de Transferência/genética
4.
Chembiochem ; 21(24): 3495-3499, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32776704

RESUMO

Homochirality is a signature of biological systems. The essential and ubiquitous cofactor S-adenosyl-l-methionine (SAM) is synthesized in cells from adenosine triphosphate and l-methionine to yield exclusively the (S,S)-SAM diastereomer. (S,S)-SAM plays a crucial role as the primary methyl donor in transmethylation reactions important to the development and homeostasis of all organisms from bacteria to humans. However, (S,S)-SAM slowly racemizes at the sulfonium center to yield the inactive (R,S)-SAM, which can inhibit methyltransferases. Control of SAM homochirality has been shown to involve homocysteine S-methyltransferases in plants, insects, worms, yeast, and in ∼18 % of bacteria. Herein, we show that a recombinant protein containing a domain of unknown function (DUF62) from the actinomycete bacterium Salinispora tropica functions as a stereoselective (R,S)-SAM hydrolase (adenosine-forming). DUF62 proteins are encoded in the genomes of 21 % of bacteria and 42 % of archaea and potentially represent a novel mechanism to remediate SAM damage.


Assuntos
Hidrolases/metabolismo , S-Adenosilmetionina/metabolismo , Hidrolases/química , Micromonosporaceae/enzimologia , Estrutura Molecular , S-Adenosilmetionina/química , Estereoisomerismo
5.
RNA ; 26(9): 1094-1103, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32385138

RESUMO

N6-threonylcarbamoyl adenosine (t6A) is a nucleoside modification found in all kingdoms of life at position 37 of tRNAs decoding ANN codons, which functions in part to restrict translation initiation to AUG and suppress frameshifting at tandem ANN codons. In Bacteria the proteins TsaB, TsaC (or C2), TsaD, and TsaE, comprise the biosynthetic apparatus responsible for t6A formation. TsaC(C2) and TsaD harbor the relevant active sites, with TsaC(C2) catalyzing the formation of the intermediate threonylcarbamoyladenosine monophosphate (TC-AMP) from ATP, threonine, and CO2, and TsaD catalyzing the transfer of the threonylcarbamoyl moiety from TC-AMP to A37 of substrate tRNAs. Several related modified nucleosides, including hydroxynorvalylcarbamoyl adenosine (hn6A), have been identified in select organisms, but nothing is known about their biosynthesis. To better understand the mechanism and structural constraints on t6A formation, and to determine if related modified nucleosides are formed via parallel biosynthetic pathways or the t6A pathway, we carried out biochemical and biophysical investigations of the t6A systems from E. coli and T. maritima to address these questions. Using kinetic assays of TsaC(C2), tRNA modification assays, and NMR, our data demonstrate that TsaC(C2) exhibit relaxed substrate specificity, producing a variety of TC-AMP analogs that can differ in both the identity of the amino acid and nucleotide component, whereas TsaD displays more stringent specificity, but efficiently produces hn6A in E. coli and T. maritima tRNA. Thus, in organisms that contain modifications such as hn6A in their tRNA, we conclude that their origin is due to formation via the t6A pathway.


Assuntos
Adenosina/análogos & derivados , Vias Biossintéticas/genética , Nucleosídeos/genética , RNA de Transferência/genética , Adenosina/genética , Monofosfato de Adenosina/genética , Trifosfato de Adenosina/genética , Aminoácidos/genética , Domínio Catalítico/genética , Escherichia coli/genética , Conformação Proteica , Especificidade por Substrato/genética , Thermotoga maritima/genética , Treonina/genética
6.
Microbiol Resour Announc ; 9(14)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241862

RESUMO

Streptomyces kaniharaensis is a Gram-positive bacterium that produces formycin A 5'-phosphate, a C nucleotide with antimicrobial and anticancer activity. Here, we report the sequencing, assembly, and annotation of the draft genome sequence of Streptomyces kaniharaensis Shomura and Niida.

7.
Biomolecules ; 10(2)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085421

RESUMO

Modifications found in the Anticodon Stem Loop (ASL) of tRNAs play important roles in regulating translational speed and accuracy. Threonylcarbamoyl adenosine (t6A37) and 5-methoxycarbonyl methyl-2-thiouridine (mcm5s2U34) are critical ASL modifications that have been linked to several human diseases. The model yeast Saccharomyces cerevisiae is viable despite the absence of both modifications, growth is however greatly impaired. The major observed consequence is a subsequent increase in protein aggregates and aberrant morphology. Proteomic analysis of the t6A-deficient strain (sua5 mutant) revealed a global mistranslation leading to protein aggregation without regard to physicochemical properties or t6A-dependent or biased codon usage in parent genes. However, loss of sua5 led to increased expression of soluble proteins for mitochondrial function, protein quality processing/trafficking, oxidative stress response, and energy homeostasis. These results point to a global function for t6A in protein homeostasis very similar to mcm5/s2U modifications.


Assuntos
Proteínas de Ligação a DNA/genética , Histona Acetiltransferases/genética , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Anticódon/genética , Anticódon/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Conformação de Ácido Nucleico , Fenótipo , Agregados Proteicos/fisiologia , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Proteínas/genética , Proteômica/métodos , RNA de Transferência/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica , Tiouridina/análogos & derivados , Tiouridina/química
8.
Elife ; 82019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30657448

RESUMO

JCVI-syn3A, a robust minimal cell with a 543 kbp genome and 493 genes, provides a versatile platform to study the basics of life. Using the vast amount of experimental information available on its precursor, Mycoplasma mycoides capri, we assembled a near-complete metabolic network with 98% of enzymatic reactions supported by annotation or experiment. The model agrees well with genome-scale in vivo transposon mutagenesis experiments, showing a Matthews correlation coefficient of 0.59. The genes in the reconstruction have a high in vivo essentiality or quasi-essentiality of 92% (68% essential), compared to 79% in silico essentiality. This coherent model of the minimal metabolism in JCVI-syn3A at the same time also points toward specific open questions regarding the minimal genome of JCVI-syn3A, which still contains many genes of generic or completely unclear function. In particular, the model, its comparison to in vivo essentiality and proteomics data yield specific hypotheses on gene functions and metabolic capabilities; and provide suggestions for several further gene removals. In this way, the model and its accompanying data guide future investigations of the minimal cell. Finally, the identification of 30 essential genes with unclear function will motivate the search for new biological mechanisms beyond metabolism.


One way that researchers can test whether they understand a biological system is to see if they can accurately recreate it as a computer model. The more they learn about living things, the more the researchers can improve their models and the closer the models become to simulating the original. In this approach, it is best to start by trying to model a simple system. Biologists have previously succeeded in creating 'minimal bacterial cells'. These synthetic cells contain fewer genes than almost all other living things and they are believed to be among the simplest possible forms of life that can grow on their own. The minimal cells can produce all the chemicals that they need to survive ­ in other words, they have a metabolism. Accurately recreating one of these cells in a computer is a key first step towards simulating a complete living system. Breuer et al. have developed a computer model to simulate the network of the biochemical reactions going on inside a minimal cell with just 493 genes. By altering the parameters of their model and comparing the results to experimental data, Breuer et al. explored the accuracy of their model. Overall, the model reproduces experimental results, but it is not yet perfect. The differences between the model and the experiments suggest new questions and tests that could advance our understanding of biology. In particular, Breuer et al. identified 30 genes that are essential for life in these cells but that currently have no known purpose. Continuing to develop and expand models like these to reproduce more complex living systems provides a tool to test current knowledge of biology. These models may become so advanced that they could predict how living things will respond to changing situations. This would allow scientists to test ideas sooner and make much faster progress in understanding life on Earth. Ultimately, these models could one day help to accelerate medical and industrial processes to save lives and enhance productivity.


Assuntos
Genes Essenciais , Genoma Bacteriano , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , Trifosfato de Adenosina/química , Simulação por Computador , Elementos de DNA Transponíveis , Escherichia coli , Ácido Fólico/metabolismo , Cinética , Substâncias Macromoleculares , Mutagênese , Proteômica
9.
Biochem J ; 475(4): 813-825, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29382740

RESUMO

The pantothenate (vitamin B5) synthesis pathway in plants is not fully defined because the subcellular site of its ketopantoate → pantoate reduction step is unclear. However, the pathway is known to be split between cytosol, mitochondria, and potentially plastids, and inferred to involve mitochondrial or plastidial transport of ketopantoate or pantoate. No proteins that mediate these transport steps have been identified. Comparative genomic and transcriptomic analyses identified Arabidopsis thaliana BASS1 (At1g78560) and its maize (Zea mays) ortholog as candidates for such a transport role. BASS1 proteins belong to the bile acid : sodium symporter family and share similarity with the Salmonella enterica PanS pantoate/ketopantoate transporter and with predicted bacterial transporters whose genes cluster on the chromosome with pantothenate synthesis genes. Furthermore, Arabidopsis BASS1 is co-expressed with genes related to metabolism of coenzyme A, the cofactor derived from pantothenate. Expression of Arabidopsis or maize BASS1 promoted the growth of a S. enterica panB panS mutant strain when pantoate, but not ketopantoate, was supplied, and increased the rate of [3H]pantoate uptake. Subcellular localization of green fluorescent protein fusions in Nicotiana tabacum BY-2 cells demonstrated that Arabidopsis BASS1 is targeted solely to the plastid inner envelope. Two independent Arabidopsis BASS1 knockout mutants accumulated pantoate ∼10-fold in leaves and had smaller seeds. Taken together, these data indicate that BASS1 is a physiologically significant plastidial pantoate transporter and that the pantoate reduction step in pantothenate biosynthesis could be at least partly localized in plastids.


Assuntos
Proteínas de Membrana Transportadoras/genética , Redes e Vias Metabólicas/genética , Ácido Pantotênico/genética , Proteínas de Plantas/genética , Plastídeos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Citosol/enzimologia , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/genética , Mitocôndrias/genética , Proteínas Mitocondriais , Transportadores de Ácidos Monocarboxílicos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Ácido Pantotênico/biossíntese , Salmonella enterica/genética , Zea mays/genética
10.
Eur J Hum Genet ; 25(5): 545-551, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28272532

RESUMO

Post-transcriptional tRNA modifications are numerous and require a large set of highly conserved enzymes in humans and other organisms. In yeast, the loss of many modifications is tolerated under unstressed conditions; one exception is the N6-threonyl-carbamoyl-adenosine (t6A) modification, loss of which causes a severe growth phenotype. Here we aimed at a molecular diagnosis in a brother and sister from a consanguineous family who presented with global developmental delay, failure to thrive and a renal defect manifesting in proteinuria and hypomagnesemia. Using exome sequencing, the patients were found to be homozygous for the c.974G>A (p.(Arg325Gln)) variant of the KAE1 gene. KAE1 is a constituent of the KEOPS complex, a five-subunit complex that catalyzes the second biosynthetic step of t6A in the cytosol. The yeast KAE1 allele carrying the equivalent mutation did not rescue the t6A deficiency of the kae1Δ yeast strain as efficiently as the WT allele; furthermore, t6A levels quantified by LC-MS/MS were lower in the kae1Δ strain which was complemented by the mutation than in the kae1Δ strain, which was complemented by the WT allele. We conclude that homozygosity for c.974G>A (p.(Arg325Gln)) in KAE1 likely exerts its pathogenic effect by perturbing t6A synthesis, thereby interfering with global protein production. This is the first report of t6A biosynthesis defect in human. KAE1 joins the growing list of cytoplasmic tRNA modification enzymes, all associated with severe neurological disorders.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/genética , Deficiências do Desenvolvimento/genética , Nefropatias/genética , Erros Inatos do Metabolismo/genética , Mutação , RNA de Transferência/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Criança , Deficiências do Desenvolvimento/diagnóstico , Exoma , Feminino , Teste de Complementação Genética , Homozigoto , Humanos , Nefropatias/diagnóstico , Magnésio/metabolismo , Masculino , Erros Inatos do Metabolismo/diagnóstico , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Síndrome
11.
ACS Chem Biol ; 12(3): 844-851, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28128549

RESUMO

The reduction of epoxyqueuosine (oQ) is the last step in the synthesis of the tRNA modification queuosine (Q). While the epoxyqueuosine reductase (EC 1.17.99.6) enzymatic activity was first described 30 years ago, the encoding gene queG was only identified in Escherichia coli in 2011. Interestingly, queG is absent from a large number of sequenced genomes that harbor Q synthesis or salvage genes, suggesting the existence of an alternative epoxyqueuosine reductase in these organisms. By analyzing phylogenetic distributions, physical gene clustering, and fusions, members of the Domain of Unknown Function 208 (DUF208) family were predicted to encode for an alternative epoxyqueuosine reductase. This prediction was validated with genetic methods. The Q modification is present in Lactobacillus salivarius, an organism missing queG but harboring the duf208 gene. Acinetobacter baylyi ADP1 is one of the few organisms that harbor both QueG and DUF208, and deletion of both corresponding genes was required to observe the absence of Q and the accumulation of oQ in tRNA. Finally, the conversion oQ to Q was restored in an E. coli queG mutant by complementation with plasmids harboring duf208 genes from different bacteria. Members of the DUF208 family are not homologous to QueG enzymes, and thus, duf208 is a non-orthologous replacement of queG. We propose to name DUF208 encoding genes as queH. While QueH contains conserved cysteines that could be involved in the coordination of a Fe/S center in a similar fashion to what has been identified in QueG, no cobalamin was identified associated with recombinant QueH protein.


Assuntos
Genômica , Nucleosídeo Q/análogos & derivados , Oxirredutases/metabolismo , Lactobacillus/enzimologia , Lactobacillus/genética , Nucleosídeo Q/metabolismo
12.
Mol Microbiol ; 98(6): 1199-221, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26337258

RESUMO

Threonylcarbamoyladenosine (t(6)A) is a modified nucleoside universally conserved in tRNAs in all three kingdoms of life. The recently discovered genes for t(6)A synthesis, including tsaC and tsaD, are essential in model prokaryotes but not essential in yeast. These genes had been identified as antibacterial targets even before their functions were known. However, the molecular basis for this prokaryotic-specific essentiality has remained a mystery. Here, we show that t(6)A is a strong positive determinant for aminoacylation of tRNA by bacterial-type but not by eukaryotic-type isoleucyl-tRNA synthetases and might also be a determinant for the essential enzyme tRNA(Ile)-lysidine synthetase. We confirm that t(6)A is essential in Escherichia coli and a survey of genome-wide essentiality studies shows that genes for t(6)A synthesis are essential in most prokaryotes. This essentiality phenotype is not universal in Bacteria as t(6)A is dispensable in Deinococcus radiodurans, Thermus thermophilus, Synechocystis PCC6803 and Streptococcus mutans. Proteomic analysis of t(6)A(-) D. radiodurans strains revealed an induction of the proteotoxic stress response and identified genes whose translation is most affected by the absence of t(6)A in tRNAs. Thus, although t(6)A is universally conserved in tRNAs, its role in translation might vary greatly between organisms.


Assuntos
Adenosina/análogos & derivados , Deinococcus/genética , Escherichia coli/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Adenosina/genética , Adenosina/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação/genética , Sequência Conservada , Deinococcus/metabolismo , Escherichia coli/metabolismo , Dados de Sequência Molecular , Células Procarióticas , Proteômica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Saccharomyces cerevisiae/genética
13.
J Biol Chem ; 290(30): 18699-707, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26063805

RESUMO

N(6)-Threonylcarbamoyl-adenosine (t(6)A) is a universal modification occurring at position 37 in nearly all tRNAs that decode A-starting codons, including the eukaryotic initiator tRNA (tRNAi (Met)). Yeast lacking central components of the t(6)A synthesis machinery, such as Tcs3p (Kae1p) or Tcs5p (Bud32p), show slow-growth phenotypes. In the present work, we show that loss of the Drosophila tcs3 homolog also leads to a severe reduction in size and demonstrate, for the first time in a non-microbe, that Tcs3 is required for t(6)A synthesis. In Drosophila and in mammals, tRNAi (Met) is a limiting factor for cell and animal growth. We report that the t(6)A-modified form of tRNAi (Met) is the actual limiting factor. We show that changing the proportion of t(6)A-modified tRNAi (Met), by expression of an un-modifiable tRNAi (Met) or changing the levels of Tcs3, regulate target of rapamycin (TOR) kinase activity and influences cell and animal growth in vivo. These findings reveal an unprecedented relationship between the translation machinery and TOR, where translation efficiency, limited by the availability of t(6)A-modified tRNA, determines growth potential in eukaryotic cells.


Assuntos
Proliferação de Células/genética , RNA de Transferência de Metionina/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina-Treonina Quinases TOR/genética , Proteínas de Transporte Vesicular/genética , Animais , Códon de Iniciação/genética , Drosophila/genética , Regulação da Expressão Gênica , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Processamento Pós-Transcricional do RNA/genética , Saccharomyces cerevisiae/genética , Serina-Treonina Quinases TOR/biossíntese
14.
Environ Microbiol ; 17(3): 711-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24800891

RESUMO

The nutritionally versatile soil bacterium Acinetobacter baylyi ADP1 copes with salt stress by the accumulation of compatible solutes, a strategy that is widespread in nature. This bacterium synthesizes the sugar alcohol mannitol de novo in response to osmotic stress. In a previous study, we identified MtlD, a mannitol-1-phosphate dehydrogenase, which is essential for mannitol biosynthesis and which catalyses the first step in mannitol biosynthesis, the reduction of fructose-6-phosphate (F-6-P) to the intermediate mannitol-1-phosphate (Mtl-1-P). Until now, the identity of the second enzyme, the phosphatase that catalyses the dephosphorylation of Mtl-1-P to mannitol, was elusive. Here we show that MtlD has a unique sequence among known mannitol-1-phosphate dehydrogenases with a haloacid dehalogenase (HAD)-like phosphatase domain at the N-terminus. This domain is indeed shown to have a phosphatase activity. Phosphatase activity is strictly Mg(2+) dependent. Nuclear magnetic resonance analysis revealed that purified MtlD catalyses not only reduction of F-6-P but also dephosphorylation of Mtl-1-P. MtlD of A. baylyi is the first bifunctional enzyme of mannitol biosynthesis that combines Mtl-1-P dehydrogenase and phosphatase activities in a single polypeptide chain. Bioinformatic analysis revealed that the bifunctional enzyme is widespread among Acinetobacter strains but only rarely present in other phylogenetic tribes.


Assuntos
Acinetobacter/enzimologia , Pressão Osmótica/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Acinetobacter/genética , Sequência de Aminoácidos , Frutosefosfatos/metabolismo , Manitol/metabolismo , Manitol Fosfatos/metabolismo , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/genética , Filogenia
15.
Eukaryot Cell ; 13(9): 1222-31, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25038083

RESUMO

Threonylcarbamoyladenosine (t(6)A) is a universal modification located in the anticodon stem-loop of tRNAs. In yeast, both cytoplasmic and mitochondrial tRNAs are modified. The cytoplasmic t(6)A synthesis pathway was elucidated and requires Sua5p, Kae1p, and four other KEOPS complex proteins. Recent in vitro work suggested that the mitochondrial t(6)A machinery of Saccharomyces cerevisiae is composed of only two proteins, Sua5p and Qri7p, a member of the Kae1p/TsaD family (L. C. K. Wan et al., Nucleic Acids Res. 41:6332-6346, 2013, http://dx.doi.org/10.1093/nar/gkt322). Sua5p catalyzes the first step leading to the threonyl-carbamoyl-AMP intermediate (TC-AMP), while Qri7 transfers the threonyl-carbamoyl moiety from TC-AMP to tRNA to form t(6)A. Qri7p localizes to the mitochondria, but Sua5p was reported to be cytoplasmic. We show that Sua5p is targeted to both the cytoplasm and the mitochondria through the use of alternative start sites. The import of Sua5p into the mitochondria is required for this organelle to be functional, since the TC-AMP intermediate produced by Sua5p in the cytoplasm is not transported into the mitochondria in sufficient amounts. This minimal t(6)A pathway was characterized in vitro and, for the first time, in vivo by heterologous complementation studies in Escherichia coli. The data revealed a potential for TC-AMP channeling in the t(6)A pathway, as the coexpression of Qri7p and Sua5p is required to complement the essentiality of the E. coli tsaD mutant. Our results firmly established that Qri7p and Sua5p constitute the mitochondrial pathway for the biosynthesis of t(6)A and bring additional advancement in our understanding of the reaction mechanism.


Assuntos
Adenosina/análogos & derivados , Proteínas de Ligação a DNA/genética , Proteínas Mitocondriais/genética , RNA de Transferência/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Adenosina/biossíntese , Anticódon/genética , Citoplasma/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Conformação de Ácido Nucleico , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Biochem J ; 463(1): 145-55, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25014715

RESUMO

The TenA protein family occurs in prokaryotes, plants and fungi; it has two subfamilies, one (TenA_C) having an active-site cysteine, the other (TenA_E) not. TenA_C proteins participate in thiamin salvage by hydrolysing the thiamin breakdown product amino-HMP (4-amino-5-aminomethyl-2-methylpyrimidine) to HMP (4-amino-5-hydroxymethyl-2-methylpyrimidine); the function of TenA_E proteins is unknown. Comparative analysis of prokaryote and plant genomes predicted that (i) TenA_E has a salvage role similar to, but not identical with, that of TenA_C and (ii) that TenA_E and TenA_C also have non-salvage roles since they occur in organisms that cannot make thiamin. Recombinant Arabidopsis and maize TenA_E proteins (At3g16990, GRMZM2G080501) hydrolysed amino-HMP to HMP and, far more actively, hydrolysed the N-formyl derivative of amino-HMP to amino-HMP. Ablating the At3g16990 gene in a line with a null mutation in the HMP biosynthesis gene ThiC prevented its rescue by amino-HMP. Ablating At3g16990 in the wild-type increased sensitivity to paraquat-induced oxidative stress; HMP overcame this increased sensitivity. Furthermore, the expression of TenA_E and ThiC genes in Arabidopsis and maize was inversely correlated. These results indicate that TenA_E proteins mediate amidohydrolase and aminohydrolase steps in the salvage of thiamin breakdown products. As such products can be toxic, TenA_E proteins may also pre-empt toxicity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Hidrolases/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Tiamina/metabolismo , Zea mays/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Herbicidas/farmacologia , Hidrolases/genética , Proteínas Ferro-Enxofre/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Paraquat/farmacologia , Tiamina/genética , Zea mays/genética
17.
RNA Biol ; 11(12): 1529-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25629598

RESUMO

The tRNA modification field has a rich literature covering biochemical analysis going back more than 40 years, but many of the corresponding genes were only identified in the last decade. In recent years, comparative genomic-driven analysis has allowed for the identification of the genes and subsequent characterization of the enzymes responsible for N6-threonylcarbamoyladenosine (t(6)A). This universal modification, located in the anticodon stem-loop at position 37 adjacent to the anticodon of tRNAs, is found in nearly all tRNAs that decode ANN codons. The t(6)A biosynthesis enzymes and synthesis pathways have now been identified, revealing both a core set of enzymes and kingdom-specific variations. This review focuses on the elucidation of the pathway, diversity of the synthesis genes, and proposes a new nomenclature for t(6)A synthesis enzymes.


Assuntos
Adenosina/análogos & derivados , Proteínas Arqueais/metabolismo , Proteínas de Escherichia coli/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Adenosina/biossíntese , Anticódon/química , Anticódon/metabolismo , Proteínas Arqueais/genética , Códon/química , Códon/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Humanos , Conformação de Ácido Nucleico , RNA de Transferência/química , Proteínas de Ligação a RNA/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/genética
18.
Plant Physiol ; 162(2): 581-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23590975

RESUMO

Plants make coenzyme A (CoA) in the cytoplasm but use it for reactions in mitochondria, chloroplasts, and peroxisomes, implying that these organelles have CoA transporters. A plant peroxisomal CoA transporter is already known, but plant mitochondrial or chloroplastic CoA transporters are not. Mitochondrial CoA transporters belonging to the mitochondrial carrier family, however, have been identified in yeast (Saccharomyces cerevisiae; Leu-5p) and mammals (SLC25A42). Comparative genomic analysis indicated that angiosperms have two distinct homologs of these mitochondrial CoA transporters, whereas nonflowering plants have only one. The homologs from maize (Zea mays; GRMZM2G161299 and GRMZM2G420119) and Arabidopsis (Arabidopsis thaliana; At1g14560 and At4g26180) all complemented the growth defect of the yeast leu5Δ mitochondrial CoA carrier mutant and substantially restored its mitochondrial CoA level, confirming that these proteins have CoA transport activity. Dual-import assays with purified pea (Pisum sativum) mitochondria and chloroplasts, and subcellular localization of green fluorescent protein fusions in transiently transformed tobacco (Nicotiana tabacum) Bright Yellow-2 cells, showed that the maize and Arabidopsis proteins are targeted to mitochondria. Consistent with the ubiquitous importance of CoA, the maize and Arabidopsis mitochondrial CoA transporter genes are expressed at similar levels throughout the plant. These data show that representatives of both monocotyledons and eudicotyledons have twin, mitochondrially located mitochondrial carrier family carriers for CoA. The highly conserved nature of these carriers makes possible their reliable annotation in other angiosperm genomes.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Coenzima A/metabolismo , Proteínas Mitocondriais/metabolismo , Zea mays/genética , Antiporters/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Zea mays/metabolismo
19.
Biol Direct ; 7: 32, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23013770

RESUMO

BACKGROUND: The availability of over 3000 published genome sequences has enabled the use of comparative genomic approaches to drive the biological function discovery process. Classically, one used to link gene with function by genetic or biochemical approaches, a lengthy process that often took years. Phylogenetic distribution profiles, physical clustering, gene fusion, co-expression profiles, structural information and other genomic or post-genomic derived associations can be now used to make very strong functional hypotheses. Here, we illustrate this shift with the analysis of the DUF71/COG2102 family, a subgroup of the PP-loop ATPase family. RESULTS: The DUF71 family contains at least two subfamilies, one of which was predicted to be the missing diphthine-ammonia ligase (EC 6.3.1.14), Dph6. This enzyme catalyzes the last ATP-dependent step in the synthesis of diphthamide, a complex modification of Elongation Factor 2 that can be ADP-ribosylated by bacterial toxins. Dph6 orthologs are found in nearly all sequenced Archaea and Eucarya, as expected from the distribution of the diphthamide modification. The DUF71 family appears to have originated in the Archaea/Eucarya ancestor and to have been subsequently horizontally transferred to Bacteria. Bacterial DUF71 members likely acquired a different function because the diphthamide modification is absent in this Domain of Life. In-depth investigations suggest that some archaeal and bacterial DUF71 proteins participate in B12 salvage. CONCLUSIONS: This detailed analysis of the DUF71 family members provides an example of the power of integrated data-miming for solving important "missing genes" or "missing function" cases and illustrates the danger of functional annotation of protein families by homology alone.


Assuntos
Adenosina Trifosfatases/metabolismo , Archaea/genética , Proteínas Arqueais/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Histidina/análogos & derivados , Vitamina B 12/metabolismo , Archaea/química , Archaea/enzimologia , Archaea/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Bactérias/química , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Mapeamento Cromossômico , Estudos de Associação Genética , Histidina/biossíntese , Histidina/química , Modelos Moleculares , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
20.
PLoS One ; 7(8): e43013, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927945

RESUMO

KEOPS is an important cellular complex conserved in Eukarya, with some subunits conserved in Archaea and Bacteria. This complex was recently found to play an essential role in formation of the tRNA modification threonylcarbamoyladenosine (t(6)A), and was previously associated with telomere length maintenance and transcription. KEOPS subunits are conserved in Archaea, especially in the Euryarchaea, where they had been studied in vitro. Here we attempted to delete the genes encoding the four conserved subunits of the KEOPS complex in the euryarchaeote Haloferax volcanii and study their phenotypes in vivo. The fused kae1-bud32 gene was shown to be essential as was cgi121, which is dispensable in yeast. In contrast, pcc1 (encoding the putative dimerizing unit of KEOPS) was not essential in H. volcanii. Deletion of pcc1 led to pleiotropic phenotypes, including decreased growth rate, reduced levels of t(6)A modification, and elevated levels of intra-cellular glycation products.


Assuntos
Proteínas Arqueais/genética , Haloferax/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteínas Arqueais/metabolismo , DNA Arqueal/metabolismo , Fusão Gênica , Produtos Finais de Glicação Avançada/metabolismo , Haloferax/crescimento & desenvolvimento , Haloferax/metabolismo , Mutação , RNA Arqueal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA